Docs

0%

Loading...

Static preview:

References

Baraff, D. (1996). Linear-time dynamics using Lagrange multipliers. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (pp. 137–146). ACM. https://dl.acm.org/doi/10.1145/237170.237226 http://doi.org/10.1145/237170.237226

Featherstone, R. (1983). The Calculation of Robot Dynamics Using Articulated-Body Inertias. The International Journal of Robotics Research, 2, 13–30. https://doi.org/10.1177/027836498300200102 http://doi.org/10.1177/027836498300200102

Macklin, M., Müller, M., & Chentanez, N. (2016). XPBD: position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games (pp. 49–54). Association for Computing Machinery. https://doi.org/10.1145/2994258.2994272 http://doi.org/10.1145/2994258.2994272

Mirtich, B.V. (1996). Impulse-based Dynamic Simulation of Rigid Body Systems. [unpublished Ph.D. Thesis, University of California Berkeley]. https://people.eecs.berkeley.edu/~jfc/mirtich/thesis/mirtichThesis.pdf

Müller, M., Macklin, M., Chentanez, N., Jeschke, S., & Kim, T. (2020). Detailed Rigid Body Simulation with Extended Position Based Dynamics. Computer Graphics Forum, 39, 101–112. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14105 http://doi.org/10.1111/cgf.14105

Nealen, A., Müller, M., Keiser, R., Boxerman, E., & Carlson, M. (2006). Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum, 25, 809–836. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2006.01000.x http://doi.org/10.1111/j.1467-8659.2006.01000.x